Construction of isomorphic classes of linear Binary codes

Based on Reseach By Harald Fripertinger, Adalbert Kerber and Reinhard Laue,

Presentation by:
Alexander Erick Trofimoff
PhD program
ECE Dept
Drexel U
2015 Spring

Bibliography

Betten A., Braun M., Fripertinger H., Kerber A., Kohnert A., Wasserman A., Error Correcting Linear Codes – Classification by Isometry and Applications, Springer Algorithmics and Computations in Mathematics Vol 18, 2006

Presentation Outline

- ✓ Construction of Codes when we can't compute a canonical from every subset (Snakes and Ladders Algorithm-Overview)
- Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.
- Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit. (R and S are both canonical, since $R, S \in \tau_i$)
- Problem 3: Compute in y the Stabilizer $G_{R \cup \{x\}}$, assuming that G_R is known.
- Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in \tau_{i+1}$
- General Algorithm of snakes and ladders for generation of codes.

- ✓ Orderly generating of codes algorithm and its variation with canonical augmentation rely on the fact that we are able to compute a canonical from every subset, which is not always feasible.
 - ✓ Computing the canonical form depends of the nature of the group action under consideration.
 - ✓ Snakes & Ladders is an orbit algorithm which is general, it doesn't depend on the nature of the group.
- ✓ The cost of it is the amount of memory required correlates linearly to the number of orbits computed.
- ✓ The speedup from the memory vs time tradeoff makes it realistic to tackle instances of hard problems as computation of isometry classes of linear codes.

There two ways to describe the algorithm:

- Computing orbits of a group G on orbits on subsets of a set X on which G acts, or
 Double cosets in finite groups.
 - The algorithm works along a sequence of subgroups which are alternatively subgroups and overgroups of each other (down and up process)

- 1. Assuming that the Orbits on points can be computed, the main goal is to provide a triple (τ, σ, φ) which is a solution to the orbit problem on G acting on admissible subsets of X.
 - **2.** Inductive approach: we are going to compute orbits of G on $\mathcal{D}_i^{(f)}(X)$ for i=0,1,...., this corresponds to a breath first search.
 - 3. If i=1 this is reduced to be the basic **Orbit on Points Algorithm**.
 - 4. Let orbit $(G, \wp_i^{(f)}(X)) = (\tau_i, \sigma_i, \varphi_i)$ be a solution of the orbit problem on i-subsets.
 - 5. Assume that a **transversal** τ_i of orbits of G on sets $\wp_i^{(f)}(X)$ has been already computed.

A set R is canonical if it belongs to one of the transversals \mathcal{T}_i for some i.

6. In order to Compute \mathcal{T}_{i+1} , consider extensions of the sets in \mathcal{T}_i An extension is a set of the form $\mathbf{R} \cup \{x\} \in \mathcal{D}_{i+1}$ (f)

7. To compute the next level of orbits on (i+1)-sets we have to deal with:

```
Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached. Problem 2: Determine when 2 extensions are isomorphic R U \{x\} and S U \{y\}, i.e. belong to the same G -orbit. (R and S are both canonical, since R, S \in \mathcal{T}_i) Problem 3: Compute in y the Stabilizer G_{R \cup \{x\}}, assuming that G_R is known. Problem 4: Provide a transporter map \varphi_{i+1} for (i+1)-sets, that is, given a (i+1)-subset F \subseteq X, compute g \in G s.t. Fg \in \mathcal{T}_{i+1}
```

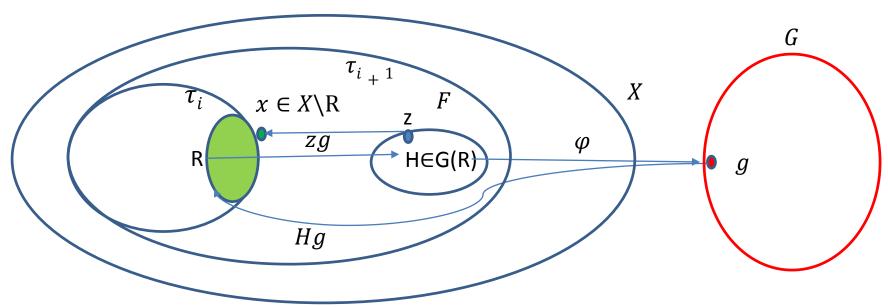
Presentation outline

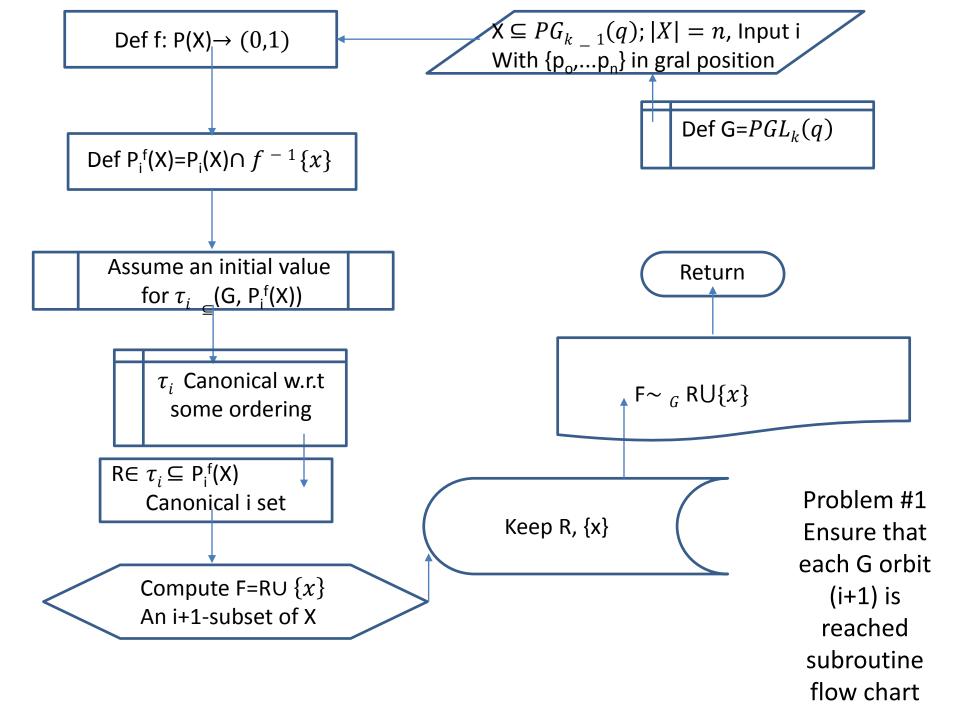
- Construction of Codes when we can't compute a canonical from every subset (Snakes and Ladders Algorithm-Overview)
- ✓ Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.
- Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit. (R and S are both canonical, since $R, S \in \tau_i$)
- Problem 3: Compute in y the Stabilizer $G_{R \cup \{x\}}$, assuming that G_R is known.
- Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in \tau_{i+1}$
- General Algorithm of snakes and ladders for generation of codes.

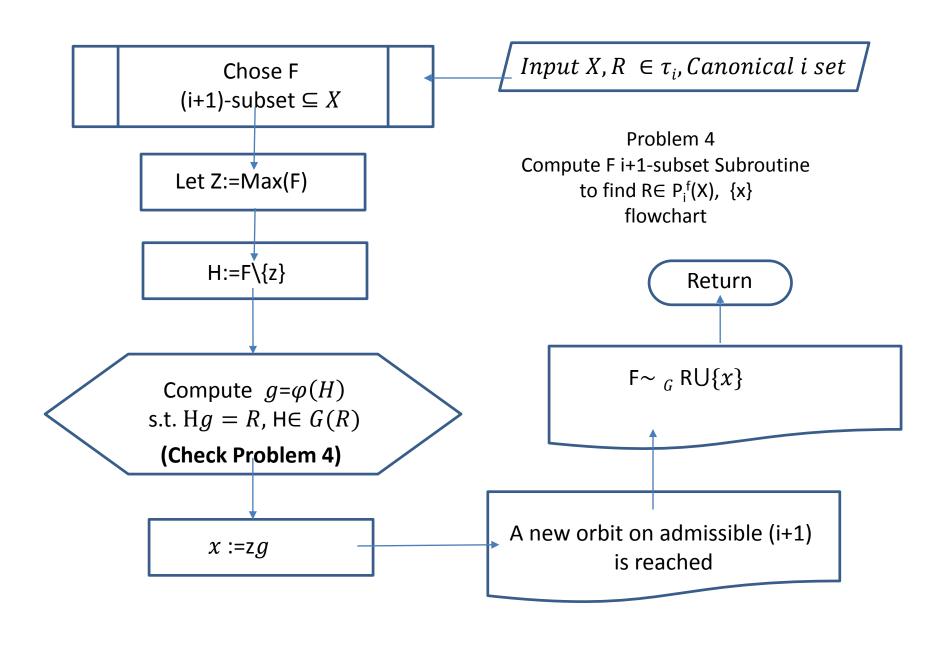
Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.

Let F be an admissible (i+1) —subset of X . Let $z:=\max F$, let $H:=F\backslash\{z\}$, admissible since f is hereditary

Thus $H \in G(R)$, for some $R \in \mathcal{T}_i$, Hg = R, for some $g = \varphi(H)$ Let $x := \mathbf{z} g \in X \setminus R$, therefore $F \sim_G R \cup \{x\}$, one of the candidate sets which We considered.







Presentation Outline

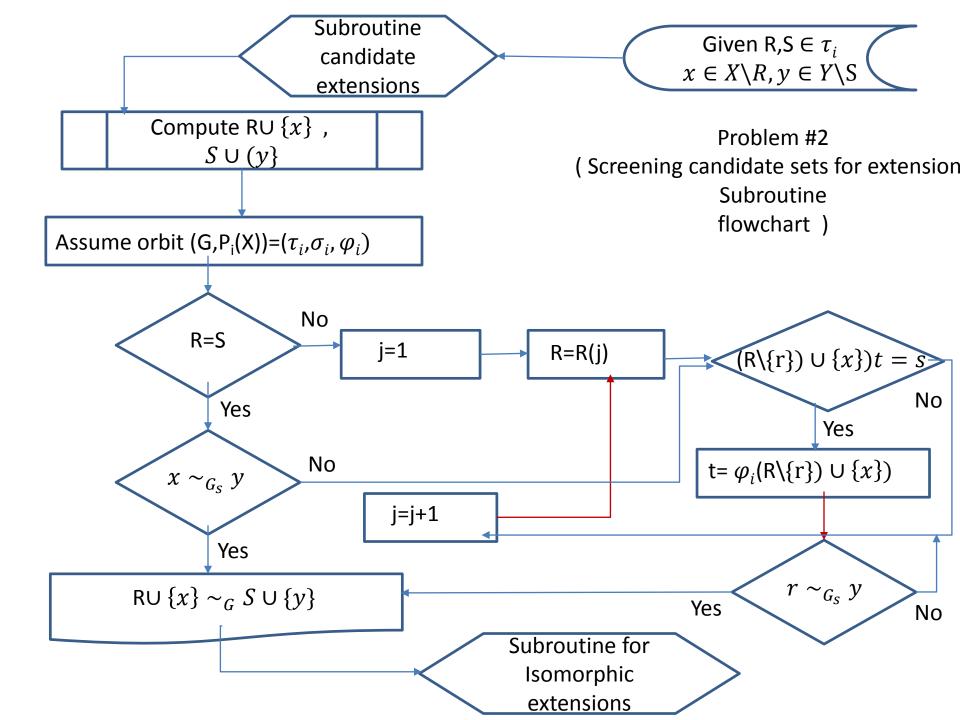
- Construction of Codes when we can't compute a canonical from every subset (Snakes and Ladders Algorithm-Overview)
- Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.
- Y Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit. (R and S are both canonical, since $R, S \in \tau_i$)
- Problem 3: Compute in y the Stabilizer $G_{R \cup \{x\}}$, assuming that G_R is known.
- Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in \tau_{i+1}$
- General Algorithm of snakes and ladders for generation of codes.

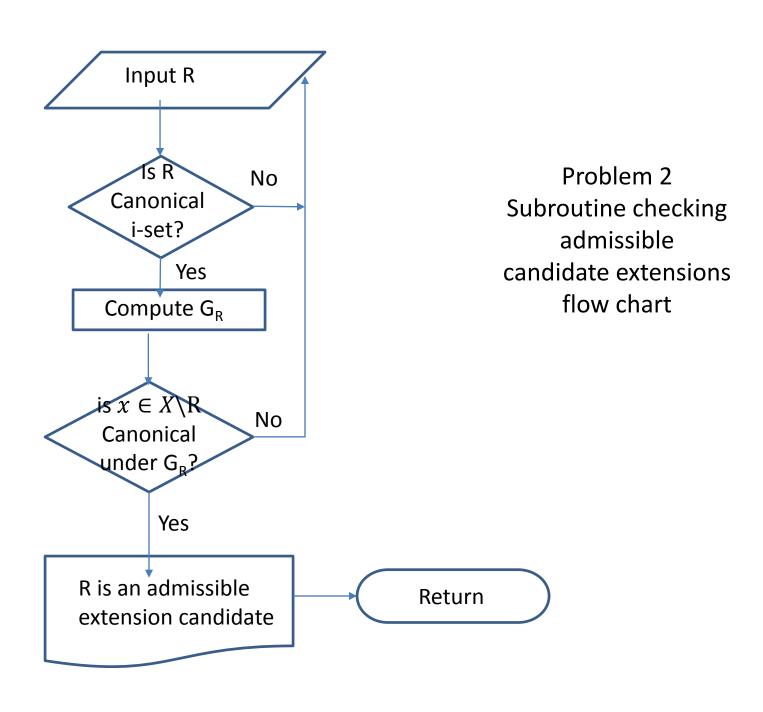
Why stabilizers subgroup are so important here?

A group action is *transitive* if $G \cdot s = S$. In other words, $\forall s,t \in S$, $\exists g \in G$ s.t. $g \cdot s = t$. Equivalently, S contains a single orbit.

The *stabilizer* of **S** is the set $G_s = \{g \in G \mid g \cdot s = s\}$, the set of elements of **G** which leave **S** unchanged under the action.

The stabilizer G_s of any element $s \in S$ is a subgroup of G.





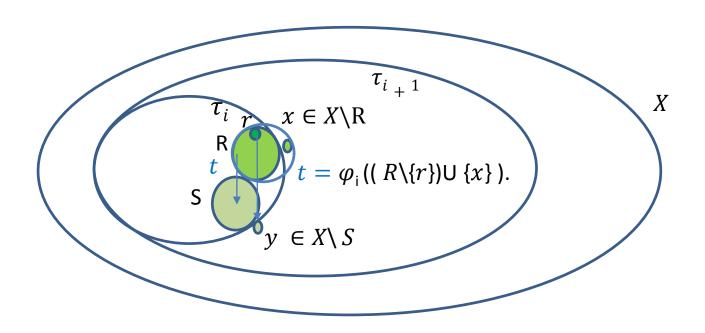
Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit.

A necessary and sufficient condition is given by:

Lemma

Assume that the orbit
$$(G, \wp_i(X)) = (\tau_i, \sigma_i, \varphi_i)$$
, for $R, S \in \mathcal{T}_i$, $x \in X \setminus R$, $y \in X \setminus S$, We have $R \cup \{x\} \sim_G S \cup \{y\}$ iff one of the following conditions hold,
$$1. \quad R = S \text{ and } x \sim G_s \ y \quad \text{, or }$$
 $2. \quad \exists \ r \in R, \quad \text{s.t. } ((R \setminus \{r\}) \cup \{x\}) t = S \quad \text{and } \ rt \sim G_s \ y \quad \text{where } t = \varphi_i \left((R \setminus \{r\}) \cup \{x\} \right).$

Problem 2: Determine when 2 extensions are isomorphic



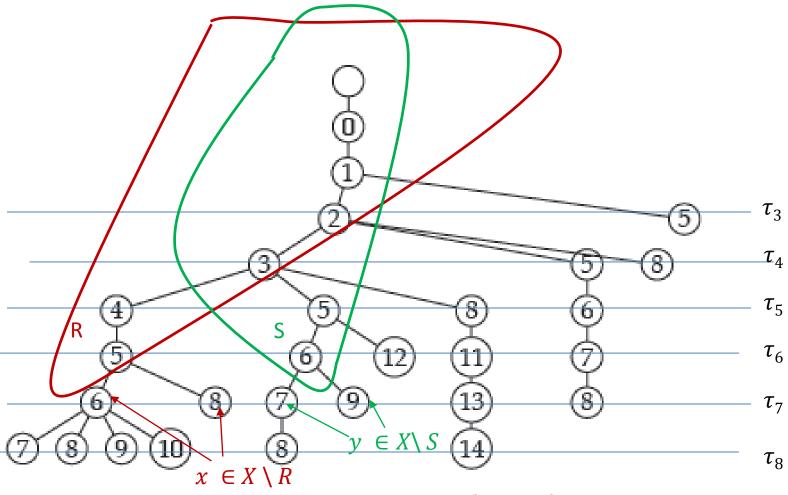


Fig. 9.4 Orbits of $PGL_4(2)$ on $\mathcal{P}_{\leq 8}\big(PG_3(2)\big)$

Necessity

$$R \cup \{x\} \rightarrow_{G} S \cup \{y\}$$

$$R . h = S \quad x . h = y$$

$$R = S \quad R, S \in \tau_{i}$$

$$R . h = S . h = S$$

$$h \in G_{s}$$

$$R \neq Rg \subseteq S \cup \{y\}$$

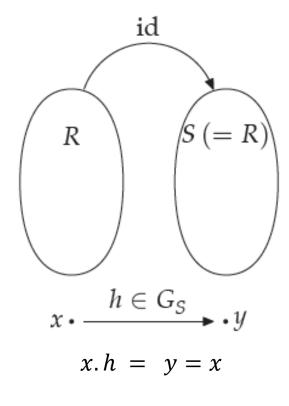
$$x. g \in S, \quad g \in (G,*)$$
If r=y. g^{-1}

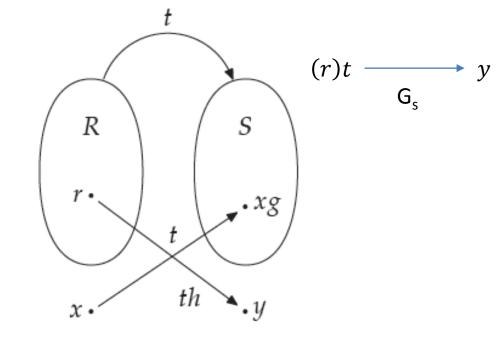
$$g = t * h, \quad h \in (G_s,*)$$

$$g \in tG_s$$

$$(r). t. h = (r). (t * h) = r. g = y ,$$

$$h \in G_s$$





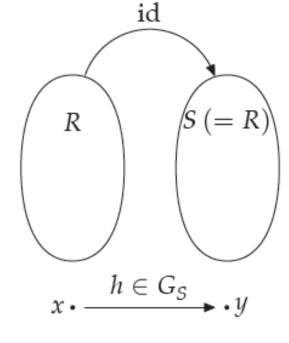
 $t = \varphi_i \left((R\{r\}) \cup \{x\} \right)$

Sufficiency

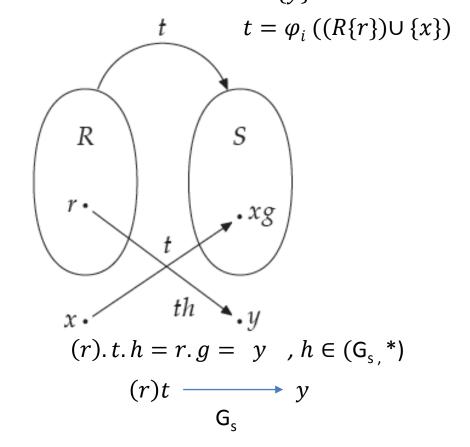
$$x \rightarrow_{Gs} y$$

 $h \in Gs$
 $x. h = y = x$
 $(R \cup \{x\}). g$
 $= R. g \cup \{x. g\}$
 $= S \cup \{y\}$

R = S



Case 2 $\exists r \ s. \ t. \ \big((R \setminus \{r\}) \cup \{x\} \big). \ t = S$ $r.t.h=r.(t*h)=y, \ h \in Gs$ $\big((R) \cup \{x\} \big). \ t. \ h$ $= \big((R \setminus \{r\}) \cup \{x\} \big). \ t. \ h \cup \{r\}. \ h$ $= S. \ h \cup \{r. \ t. \ h\}$ $= S \cup \{y\}$



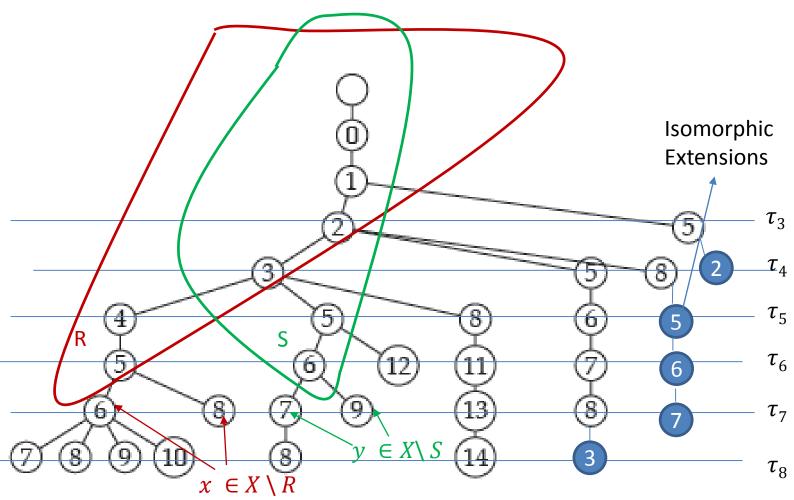
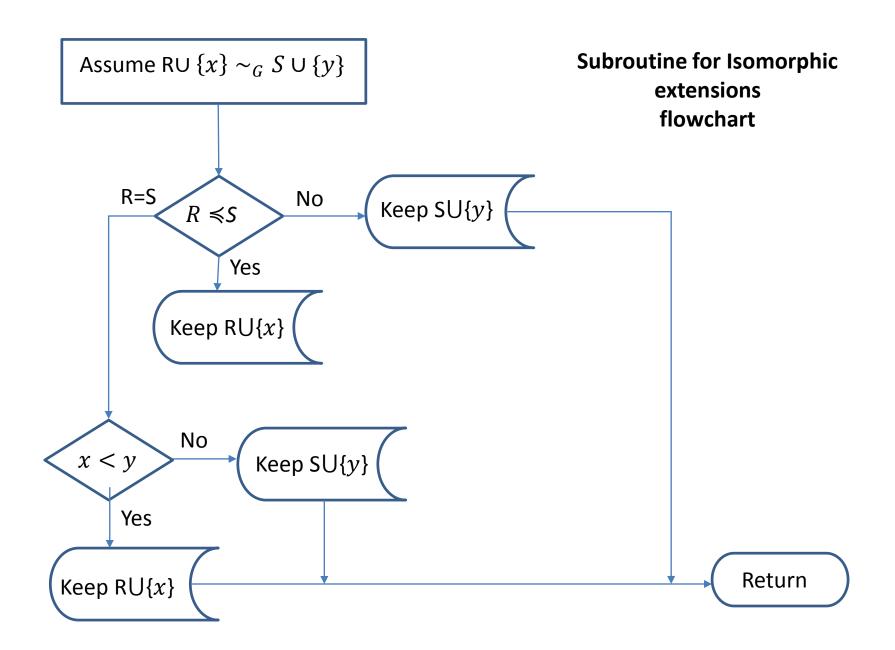


Fig. 9.4 Orbits of $PGL_4(2)$ on $\mathcal{P}_{\leq 8}(PG_3(2))$



Problem 1 Redefinition

Snakes and ladders algorithm (Leiterspiel, B. Schmalz, 1992)

Results got in problem 2 let us refine condition for Problem 1.

Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.

Corollary

It suffices to consider only extensions of the form $R \cup \{x\}$, where R is a canonical i-set and $x \in X \setminus R$ is canonical under the stabilizer G_R of R in G

Outline Presentation

- Construction of Codes when we can't compute a canonical from every subset (Snakes and Ladders Algorithm-Overview)
- Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.
- Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit. (R and S are both canonical, since $R, S \in \tau_i$)
- \checkmark Problem 3: Compute in y the Stabilizer $G_{R \cup \{x\}}$, assuming that G_R is known.
- Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in \tau_{i+1}$
- General Algorithm of snakes and ladders for generation of codes.

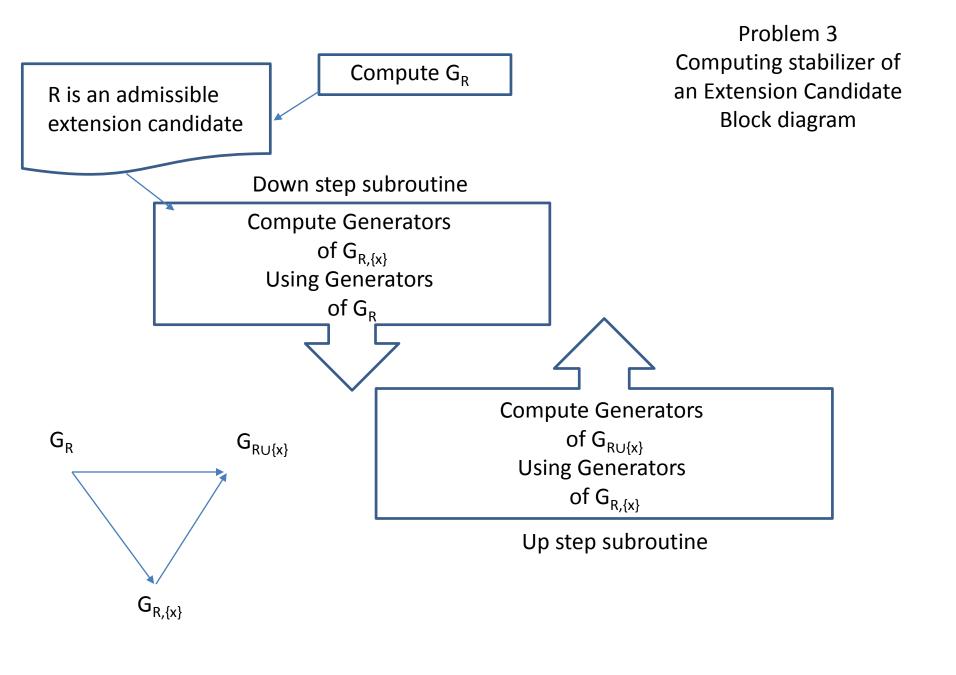
Problem 3: Compute Stabilizer in G of an extension $R \cup \{x\}$, assuming that G_R is known. If the extension is $R \cup \{x\}$, compute $G_{R \cup \{x\}}$, a set-wise stabilizer.

 \exists relationship between groups G_R and $G_{R \cup \{x\}}$, neither is a subgroup of the other.

They share a common subgroup, $G_{R,x}$, set of elements which stabilize R setwise and x pointwise.

First, go down from G_R to $G_{R,x}$ (**down step**, generators of $G_{R,x}$ can be computed from generators of G_R , using Corollary of Schreier Th.)

Second , to compute $G_{R \cup \{x\}}$ from $G_{R,x}$ (**up step**, using some Lemmas)



Theorem:(Otto Schreier)

 $\exists \ \overline{rs} \in R \mid rs \in H\overline{rs}.$

 $H = \langle rs \, \overline{r}s^{-1} \rangle$

Let G be a finite group generated by a set of elements S.

Let
$$H \leq G$$
.

Given $s \in G$ Let $R = \{r \in G \mid Hr \subseteq G/H\}$ containing 1.

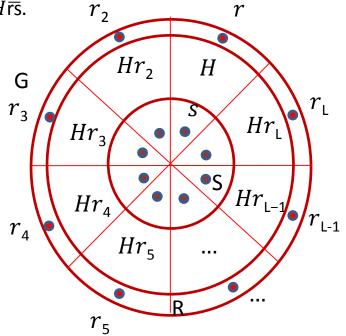
For $r \in R$, $s \in S$, Let \overline{rs} be the unique element in R with $rs \in H\overline{rs}$.

Then,

$$H = \langle rs \, \overline{r}s^{-1} \rangle$$
 , $r \in R$, $s \in S$

Each \overline{rs} is called **Schreier generator.**

Remarks: Recall that $G = \bigcup_{r \in R} Hr$ Notice that $\overline{g} \in R$ the unique element s.t. $g \in H \overline{g}$ then $\overline{hg} = \overline{g}$ if $h \in H$ $\overline{\overline{g}} = \overline{g} \ \forall \ g \in G$ $\overline{g} = 1 \ if \ g \in H$



Corollary of Scheirer Th.

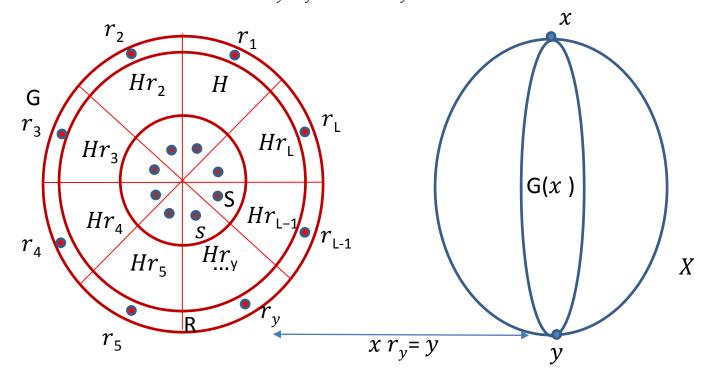
Let group G act on a finite set X and let S be a set of generators for G.

For $x \in X$, let R={ r_1 , r_2 ,... r_L } with r_1 =1 set of elements s.t. :

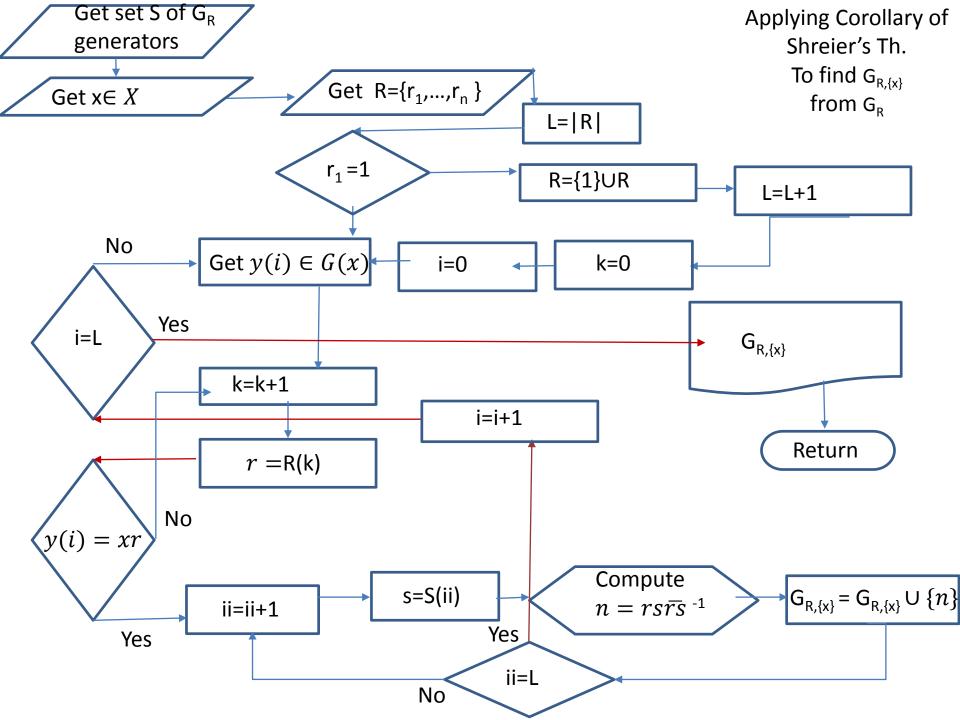
For each $y \in G(x)$ \exists one and only one $r_y \in \mathbb{R}$ with $\mathbf{x} r_y = y$, ($|G(x)| = \mathbf{L}$)

Then

$$G_x = \{ s \in G \mid sx = x \}$$
 $G_x = \langle r_y s \overline{r_y s}^{-1} \rangle$ $r_y \in R, s \in S$



$$\exists \ \overline{r_y s} \in R | \ r_y s \in H \overline{r_y s}$$



Lemma:

For an action $_{\rm G}$ X the following holds: $\forall x \in X$, the mapping θ_x : ${\sf G_x}/{\sf G}x \to {\sf G}(x)$: $g{\sf G_x} \mapsto gx, g \in G$ Is a bijection between The set

For Finite sets |G(x)| $|G: G_x| = |G/G_x| = |G|/|G_x|$

 $G/G_x = \{g G_x \mid g \in G\}$

Bijection Orbit Space and Cosets representatives of Stabilizer

Let S be a G-set, with $s \in S$ and G_s . $\forall g,h \in G, g \cdot s = h \cdot s \iff \text{if } g \cdot G_s = h \cdot G_s$. \therefore , \exists a bijection between elements of the orbit of s and cosets of the stabilizer G_s .

$$\begin{split} g \cdot s &\leftrightarrow g \ G_s \\ h \cdot s &\leftrightarrow h \ G_s \\ g \cdot s &\leftrightarrow h \ G_s \Leftrightarrow g \cdot s = h \cdot s \Leftrightarrow g, h \in G(s) \\ h \cdot s &\leftrightarrow g \ G_s \Leftrightarrow h \cdot s = g \cdot s \Leftrightarrow g, h \in G(s) \end{split}$$

$$\forall$$
 $s \in {}_{G}S$, $G(s) = coset$ action on G_{s} .

Bijection Orbit Space and Cosets representatives of Stabilizer

(Classification of **G**-Sets)

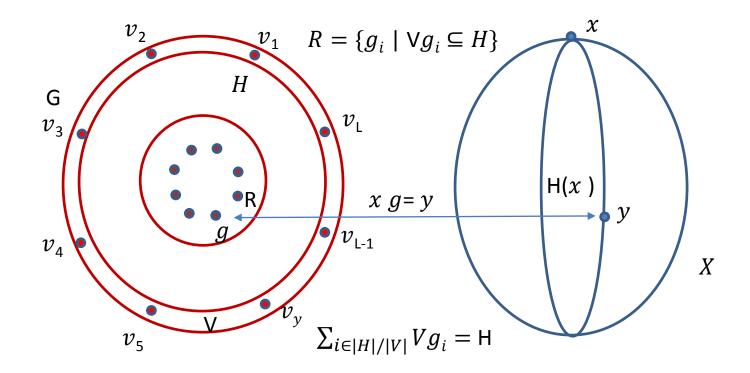
Let **G** be a finite group, and **S** a finite **G**-set. Then **S** is isomorphic to a union of coset actions of **G** on subgroups.

$$S = \bigcup_i G(si) \simeq \bigcup_i hG_{S_i}, h \in G$$

Lemma:

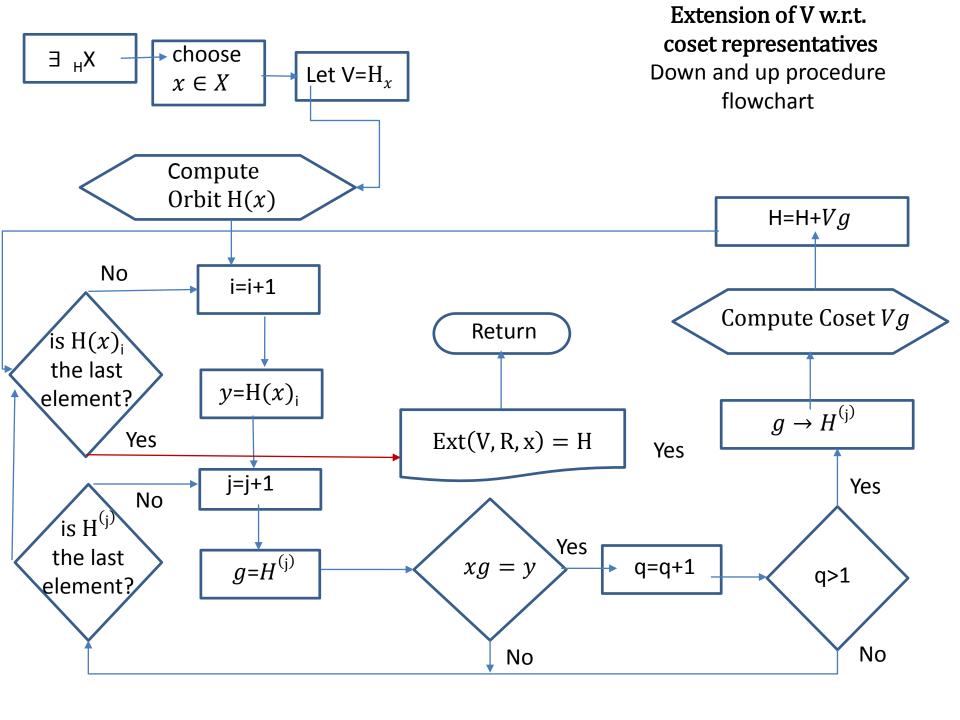
Let H act on a set X, Let $V=H_x$ be point-wise stabilizer of $x\in X$ Let R be a set of elements of H s.t. for each $y\in H(x)$, \exists one and only one $g\in R$ With xg=y. Then R is a set of right coset representatives of V in H.

We call H the extension of V w.r.t. , the coset representatives R ,



Extension of V w.r.t. coset representatives

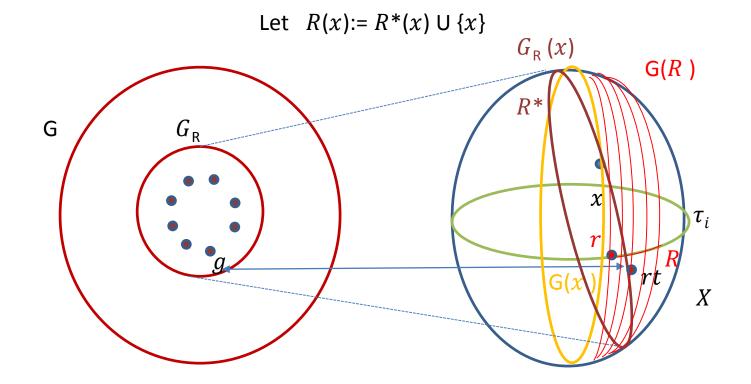
 $H = \operatorname{Ext}(V, R, x) = \bigcup_{r \in R} Vr$, union over disjoint cosets.



Special orbit sets $R^*(x)$ and R(x)

for
$$R \in \mathcal{T}_i$$
 , $x \in X \setminus R$,

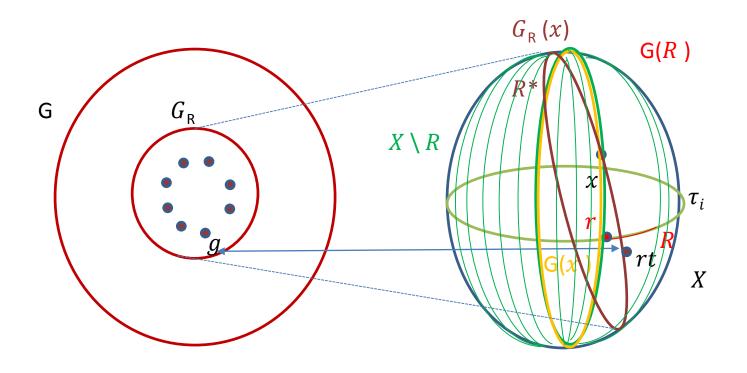
 $R^*(x) := \{r \in R \mid (R \setminus \{r\}) \cup \{x\} \in G(R) \text{ and } rt \in G_R(x)\} \text{ where } t = \varphi_i((R \setminus \{r\}) \cup \{x\}).$

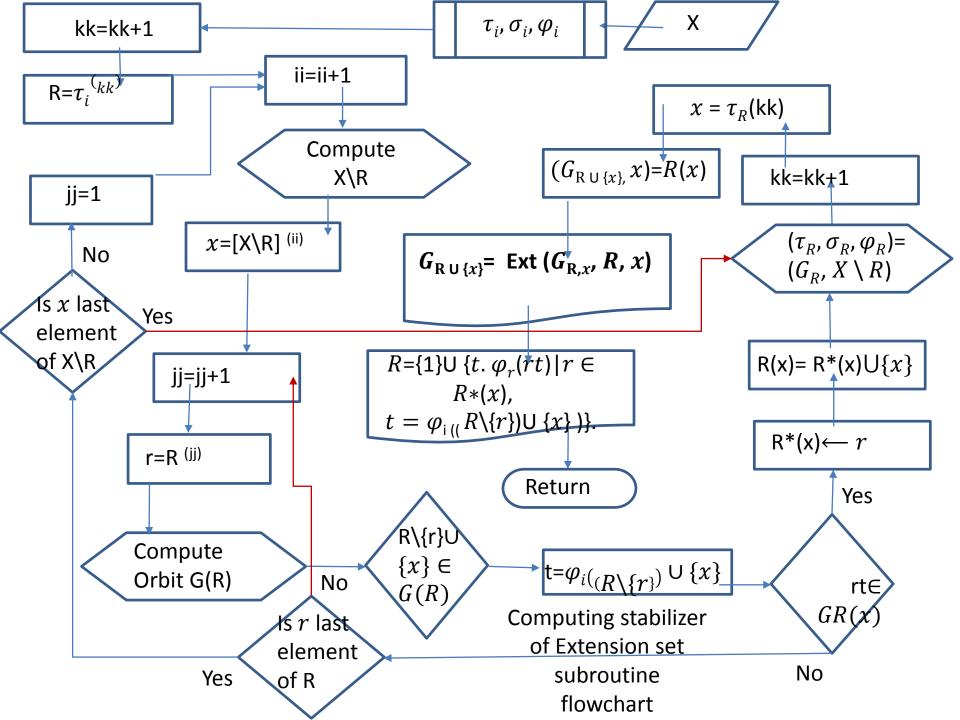


Problem 3: Compute Stabilizer in G of an extension R U $\{x\}$, assuming that G_R is known.

Lemma

Problem 3: Compute Stabilizer in G of an extension R U $\{x\}$, assuming that $G_{\rm R}$ is known.



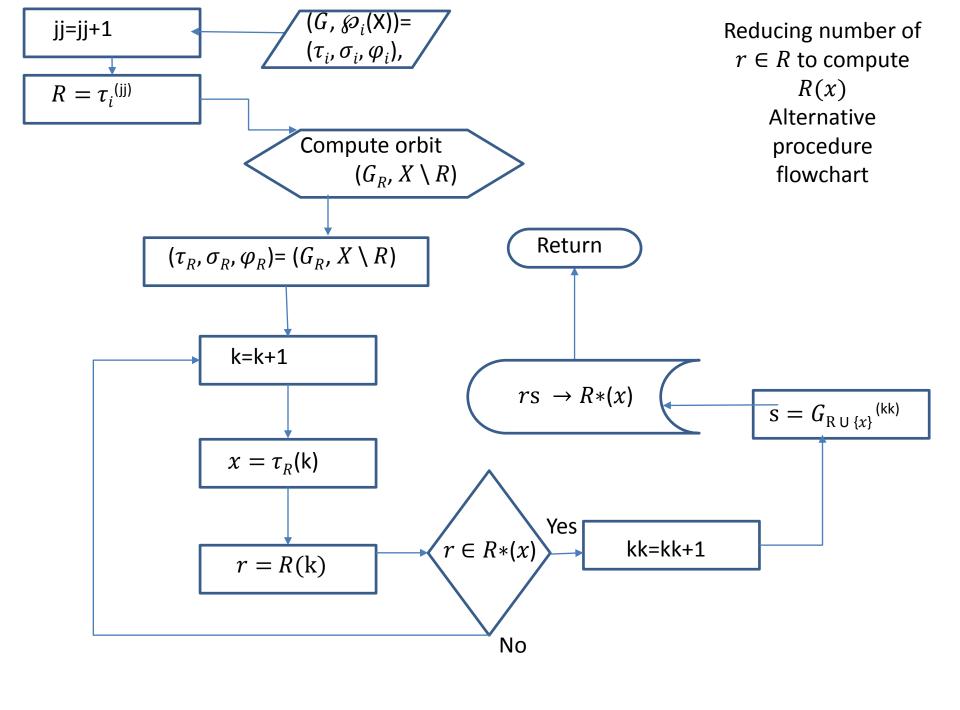


Problem 3: Compute Stabilizer in G of an extension R U $\{x\}$, assuming that G_R is known.

Lemma

Let the group G act on a set X , Assume that orbit $(G, \wp_i(\mathsf{X})) = (\tau_i, \sigma_i, \varphi_i)$, for $R \in \tau_i$, Let orbit $(G_R, X \setminus R) = (\tau_R, \sigma_R, \varphi_R)$, fix $x \in \tau_R, r \in R$ Then,

- 1. if $r \in R*(x)$ then $rs \in R*(x)$ for all $s \in G_{R \cup \{x\}}$.
- 2. if $r \notin R*(x)$ then $rs \notin R*(x)$ for all $s \in G_{R \cup \{x\}}$.

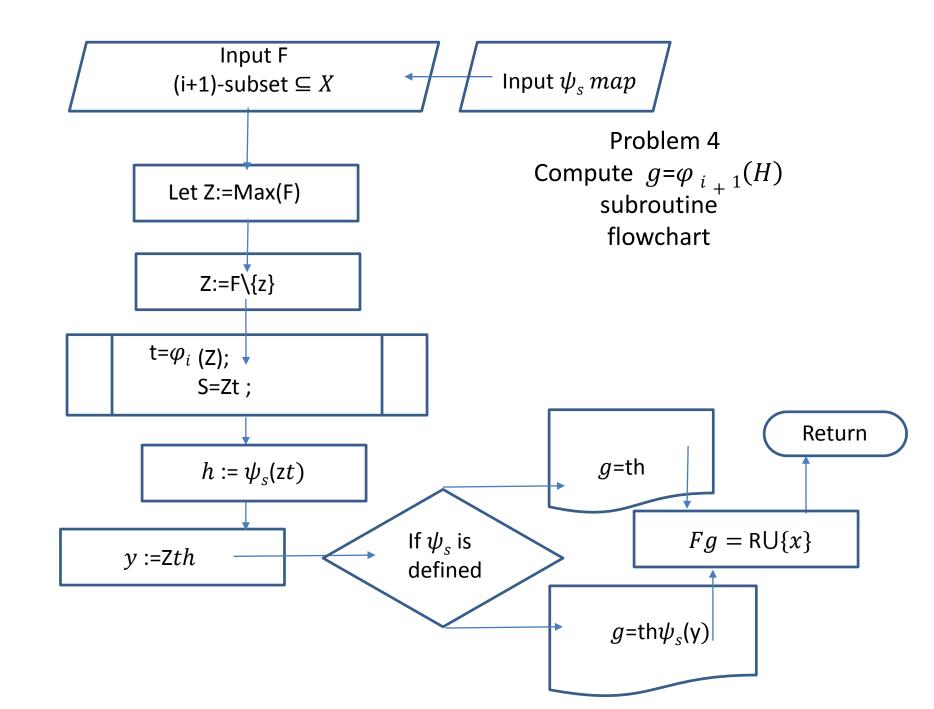


Outline Presentation

- Construction of Codes when we can't compute a canonical from every subset (Snakes and Ladders Algorithm-Overview)
- Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.
- Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit. (R and S are both canonical, since $R, S \in \tau_i$)
- Problem 3: Compute in y the Stabilizer $G_{R \cup \{x\}}$, assuming that G_R is known.
- \checkmark Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in au_{i+1}$
- General Algorithm of snakes and ladders for generation of codes.

Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in \mathcal{T}_{i+1}$ Find $g=\varphi_{i+1}(H)$ s.t. Hg=R, $H\in G(R)$

Given a set F of size i+1, the question is to find the canonical representative $R \cup \{x\} \in \tau_{i+1}$, with $F \sim_G R \cup \{x\}$ We wish to determine an element $g \in G$ with $Fg = R \cup \{x\}$. The problem is solved recursively, F is split into z:=max F and H= $F \setminus \{z\}$. By induction we can compute an element $t = \varphi_i(H)$, Then S := Ht is a canonical orbit representative Using orbit data compute $h \in Gs$ s.t. hth = y is canonical under G_s . If $SU\{y\}$ is canonical under G, we return th, Otherwise, if $SU\{y\}$ is a fusion node, then We have a fusion element $\psi s(y)$, s.t. $(SU\{y\}) \psi s(y) = R U \{x\}$ is canonical



```
Where the function \varphi_{i+1} is defined as follows.
(24) function \varphi_{i+1}(F)
       z := \max F, Z := F \setminus \{z\} (a set of size i)
(25)
(26) 	 t := \varphi_i(Z)
(27) 	 S := Zt
(28) h := \varphi_S(zt), y := zth
(29)
        if \psi_S(y) has been defined then
(30)
            return th\psi_S(y)
(31)
         else
(32)
            return th
(33)
         end if
(34) end function
```

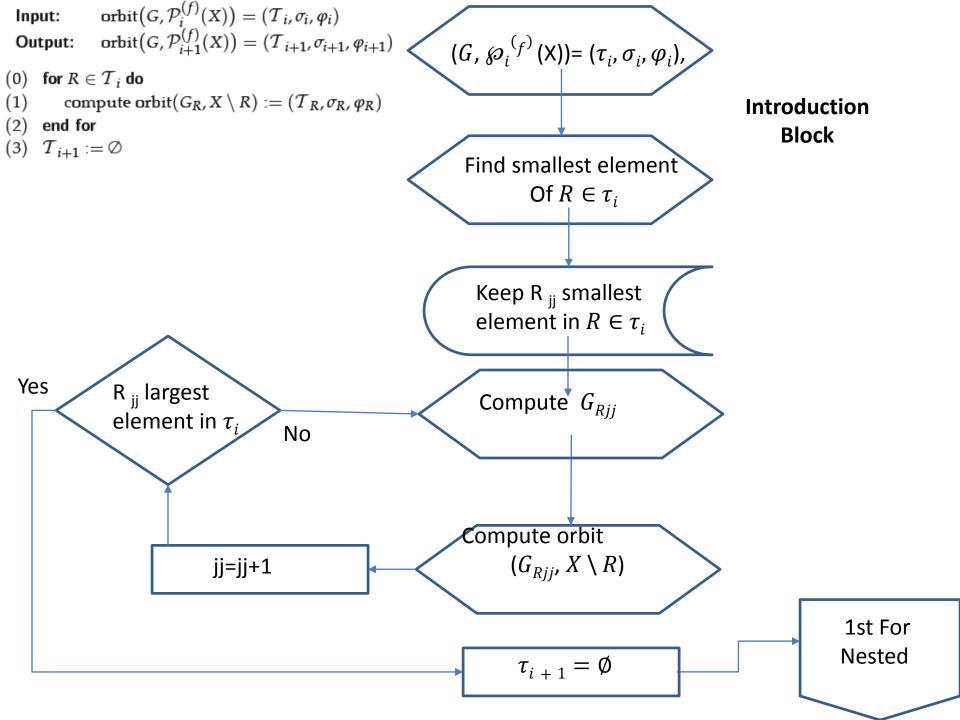
Outline Presentation

- Construction of Codes when we can't compute a canonical from every subset (Snakes and Ladders Algorithm-Overview)
- Problem 1: Ensure that each G -orbit on admissible (i+1)—sets is reached.
- Problem 2: Determine when 2 extensions are isomorphic $R \cup \{x\}$ and $S \cup \{y\}$, i.e. belong to the same G -orbit. (R and S are both canonical, since $R, S \in \tau_i$)
- Problem 3: Compute in y the Stabilizer $G_{R \cup \{x\}}$, assuming that G_R is known.
- Problem 4: Provide a transporter map φ_{i+1} for (i+1)-sets, that is, given a (i+1)-subset $F\subseteq X$, compute $g\in G$ s.t. $Fg\in \tau_{i+1}$
- ✓ General Algorithm of snakes and ladders for generation of codes.

Theorem Let G act on the finite set X. Assume that we can compute stabilizers, group extensions and orbits on points for subgroups of G. Furthermore, let $f: \mathcal{P}(X) \to \{0,1\}$ be a test function which is G-invariant and hereditary (in the sense of 9.5.1 and 9.5.2). Then Algorithm 9.6.10 computes the orbits of G on $\mathcal{P}^{(f)}(X) = \mathcal{P}(X) \cap f^{-1}(\{1\})$, the set of admissible subsets of X.

$$f \text{ is } \begin{cases} 1 \text{ } \textit{iff} \quad \textit{S is admissible} \\ f(\textit{S}) = f(\textit{Sg}) \ \forall \textit{g} \in \textit{G}, \forall \textit{S} \subseteq \textit{X} \\ f(\textit{S}) = 1 \Rightarrow f(\textit{T}) = 1, \forall \textit{T} \subseteq \textit{S} \subseteq \textit{X} \end{cases} \text{ invariant under action of a group}$$

```
Algorithm (orbits on subsets)
                 \operatorname{orbit}(G, \mathcal{P}_i^{(f)}(X)) = (T_i, \sigma_i, \varphi_i)
  Input:
                 orbit(G, \mathcal{P}_{i+1}^{(f)}(X)) = (T_{i+1}, \sigma_{i+1}, \varphi_{i+1})
  Output:
(0) for R ∈ T<sub>i</sub> do
           compute orbit(G_R, X \setminus R) := (T_R, \sigma_R, \varphi_R)
(1)
(2) end for
(3) T<sub>i+1</sub> := ∅
     for R \in T_i (in increasing order) do
(5)
         for x \in T_R (in increasing order) with f(R \cup \{x\}) = 1
                 and for which \psi_R(x) has not yet been defined do
(6)
             G_{R,x} := \sigma_R(x)
(7)
             H := G_{R,x}
             for all r \in R which are least in their H-orbit do
(8)
(9)
                 t := \varphi_i((R \setminus \{r\}) \cup \{x\})
                S := ((R \setminus \{r\}) \cup \{x\})t
(10)
                h := \varphi_S(rt)
(11)
(12)
                 y := rth
                     (now: (R \cup \{x\})th = S \cup \{y\}, S \in T_i, y \in T_S)
(13)
                 if S = R and y = x then (case 1 of 9.6.1)
(14)
                     H := \langle H, th \rangle
                        (th is an automorphism of R \cup \{x\})
(15)
                 else (case 2 of 9.6.1)
                     \psi_S(y) := (th)^{-1}
(16)
                        (th is an isomorphism from R \cup \{x\} to S \cup \{y\})
(17)
                 end if
(18)
             end for
(19)
             append R \cup \{x\} to T_{i+1}
(20)
             \sigma_{i+1}(R \cup \{x\}) := H (= G_{R \cup \{x\}})
(21)
         end for
(22) end for
(23) return (T_{i+1}, \sigma_{i+1}, \varphi_{i+1})
```



(4) for $R \in {\mathcal T}_i$ (in increasing order) do

